Search results for " zebrafish"

showing 10 items of 18 documents

Preclinical models in oncological pharmacology: limits and advantages

2021

A wide range of experimental tumor models, each with distinct advantages and disadvantages, is nowadays available. Due to the inherent differences in their complexity and functionality, the choice of the model is usually dependent on the application. Thus, to advance specific knowledge, one has to choose and use appropriate models, which complexity is largely dependent on the hypotheses to test, that is on the objectives. Whatever the model chosen, the complexity of cancer is such that none of them will be able to fully represent it. In vitro tumor models have provided important tools for cancer research and still serve as low-cost screening platforms for drugs. The improved understanding o…

3D modelengineered mouse modelsmedicine.medical_specialty3D models3d modelcell linescell lineBiologyOncology; cell lines; 3D models; engineered mouse models; zebrafish models; immunocompromised mouse modelsengineered mouse modelzebrafish modelsOncologyOncology; cell lines; 3D models; engineered mouse models; zebrafish models; immunocompromised mouse models.medicineMedical physicsimmunocompromised mouse modelszebrafish model
researchProduct

Histones, Their Variants and Post-translational Modifications in Zebrafish Development.

2020

Complex multi-cellular organisms are shaped starting from a single-celled zygote, owing to elaborate developmental programs. These programs involve several layers of regulation to orchestrate the establishment of progressively diverging cell type-specific gene expression patterns. In this scenario, epigenetic modifications of chromatin are central in influencing spatiotemporal patterns of gene transcription. In fact, it is generally recognized that epigenetic changes of chromatin states impact on the accessibility of genomic DNA to regulatory proteins. Several lines of evidence highlighted that zebrafish is an excellent vertebrate model for research purposes in the field of developmental ep…

0301 basic medicineHistone-modifying enzymeshistone posttranslational modificationsMini ReviewMorphogenesisSettore BIO/11 - Biologia Molecolarematernal-to-zygotic transitionComparative biologyComputational biologyhistone03 medical and health sciencesCell and Developmental Biology0302 clinical medicineEpigeneticshistone variantsZebrafishlcsh:QH301-705.5developmentzygotic genome activationbiologyepigeneticsCell Biologybiology.organism_classificationzebrafishChromatinhistone histone posttranslational modifications histone variants epigenetics development maternal-to-zygotic transition zygotic genome activation zebrafish030104 developmental biologyHistonelcsh:Biology (General)030220 oncology & carcinogenesisbiology.proteinMaternal to zygotic transitionDevelopmental BiologyFrontiers in cell and developmental biology
researchProduct

SLC20A1 Is Involved in Urinary Tract and Urorectal Development

2020

Previous studies in developing Xenopus and zebrafish reported that the phosphate transporter slc20a1a is expressed in pronephric kidneys. The recent identification of SLC20A1 as a monoallelic candidate gene for cloacal exstrophy further suggests its involvement in the urinary tract and urorectal development. However, little is known of the functional role of SLC20A1 in urinary tract development. Here, we investigated this using morpholino oligonucleotide knockdown of the zebrafish ortholog slc20a1a. This caused kidney cysts and malformations of the cloaca. Moreover, in morphants we demonstrated dysfunctional voiding and hindgut opening defects mimicking imperforate anus in human cloacal exs…

0301 basic medicineCandidate genePathologyMorpholinoPediatricsEmbryonalentwicklungBlasenekstrophieBladder exstrophyZebrabärbling0302 clinical medicinebladder exstrophy-epispadias complex; CAKUT; cloacal malformation; functional genetics; kidney formation; SLC20A1; urinary tract development; zebrafish developmentbladder exstrophy-epispadias complexUrinary tract; Growth and developmentZebrafishlcsh:QH301-705.5ZebrafishNiereOriginal Researchcloacal malformationKidney; EmbryologyPediatrikzebrafish developmentKidney; Growth and developmentReconstructive and regenerative medicine Radboud Institute for Molecular Life Sciences [Radboudumc 10]030220 oncology & carcinogenesisembryonic structuresfunctional geneticsmedicine.symptomSLC20A1medicine.medical_specialtyEpispadiasanimal structuresUrinary systemBiologyKidney cystsCell and Developmental Biology03 medical and health sciencesAll institutes and research themes of the Radboud University Medical Centermedicineddc:610CAKUTNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]Cloaca; Abnormalitieskidney formationCell Biologymedicine.diseaseCloacal exstrophybiology.organism_classificationurinary tract developmentReconstructive and regenerative medicine Radboud Institute for Health Sciences [Radboudumc 10]Bladder exstrophy030104 developmental biologyCloaca (embryology)lcsh:Biology (General)Developmental BiologyFrontiers in Cell and Developmental Biology
researchProduct

The increase in maternal expression of axin1 and axin2 contribute to the zebrafish mutant ichabod ventralized phenotype.

2014

β-Catenin is a central effector of the Wnt pathway and one of the players in Ca(+)-dependent cell-cell adhesion. While many wnts are present and expressed in vertebrates, only one β-catenin exists in the majority of the organisms. One intriguing exception is zebrafish that carries two genes for β-catenin. The maternal recessive mutation ichabod presents very low levels of β-catenin2 that in turn affects dorsal axis formation, suggesting that β-catenin1 is incapable to compensate for β-catenin2 loss and raising the question of whether these two β-catenins may have differential roles during early axis specification. Here we identify a specific antibody that can discriminate selectively for β-…

axin1axin2zebrafish mutant ichabodMessengerEmbryonic DevelopmentBiochemistryBETA-CATENINAxin2-RGS DOMAINAxin ProteinAntibody SpecificitySettore BIO/10 - BiochimicaAnimalsAxin2-RGS DOMAIN; AXIS FORMATION; BETA-CATENIN; Wnt signaling; ZEBRAFISH; Animals; Antibody Specificity; Axin Protein; Blastula; Cell Nucleus; Embryonic Development; Female; Gene Expression Regulation Developmental; Genes Dominant; Immunohistochemistry; Lithium Chloride; Mutation; Phenotype; Protein Stability; Protein Transport; RNA Messenger; Signal Transduction; Up-Regulation; Zebrafish; Zebrafish Proteins; beta Catenin; Biochemistry; Cell Biology; Molecular BiologyDevelopmentalDominantRNA MessengerMolecular BiologyZebrafishbeta CateninGenes DominantAXIS FORMATIONCell NucleusProtein StabilityGene Expression Regulation DevelopmentalCell BiologyBlastulaZebrafish ProteinsWnt signalingImmunohistochemistryUp-RegulationProtein TransportPhenotypeGene Expression RegulationGenesMutationRNAFemaleLithium ChlorideSignal Transduction
researchProduct

Direct activation of zebrafish neurons by ultrasonic stimulation revealed by whole CNS calcium imaging

2020

Abstract Objective. Ultrasounds (US) use in neural engineering is so far mainly limited to ablation through high intensity focused ultrasound, but interesting preliminary results show that low intensity low frequency ultrasound could be used instead to modulate neural activity. However, the extent of this modulatory ability of US is still unclear, as in in vivo studies it is hard to disentangle the contribution to neural responses of direct activation of the neuron by US stimulation and indirect activation due either to sensory response to mechanical stimulation associated to US, or to propagation of activity from neighboring areas. Here, we aim to show how to separate the three effects and…

Ultrasonic Therapy0206 medical engineeringBiomedical EngineeringCalcium imagingStimulationSensory systembrain-stimulation02 engineering and technologysystem03 medical and health sciencesCellular and Molecular NeuroscienceUltrasounds0302 clinical medicineCalcium imagingmedicineAnimalsZebrafishZebrafishNeuronscalcium imaging ultrasonic stimulation ultrasound zebrafishSensory stimulation therapybiologyCalcium imaging; Neuromodulation; Ultrasounds; ZebrafishNeuromodulationneuromodulation; zebrafish; ultrasounds; calcium imagingtranscranial focused ultrasoundNeural engineeringbiology.organism_classification020601 biomedical engineeringNeuromodulation (medicine)cellular resolutionmedicine.anatomical_structureLarvaCalciumNeuronNeuroscience030217 neurology & neurosurgeryneurostimulation
researchProduct

The impact of tumor nitric oxide production on VEGFA expression and tumor growth in a zebrafish rat glioma xenograft model.

2015

International audience; To investigate the effect of nitric oxide on tumor development, we established a rat tumor xenograft model in zebrafish embryos. The injected tumor cells formed masses in which nitric oxide production could be detected by the use of the cell-permeant DAF-FM-DA (diaminofluorophore 4-amino-5-methylamino-2'-7'-difluorofluorescein diacetate) and DAR-4M-AM (diaminorhodamine-4M). This method revealed that nitric oxide production could be co-localized with the tumor xenograft in 46% of the embryos. In 85% of these embryos, tumors were vascularized and blood vessels were observed on day 4 post injection. Furthermore, we demonstrated by qRT-PCR that the transplanted glioma ce…

Vascular Endothelial Growth Factor AMESH: Cyclin D1lcsh:MedicineMESH : Analysis of VarianceMESH: Flow Cytometry[ SDV.IMM.IA ] Life Sciences [q-bio]/Immunology/Adaptive immunologyBenzoates[SDV.IMM.II]Life Sciences [q-bio]/Immunology/Innate immunity[ SDV.CAN ] Life Sciences [q-bio]/CancerMESH: GliomaMESH: Reverse Transcriptase Polymerase Chain ReactionCyclin D1MESH: Animalslcsh:ScienceZebrafishMESH : RatsReverse Transcriptase Polymerase Chain ReactionMESH: Real-Time Polymerase Chain ReactionHistological TechniquesMESH : Reverse Transcriptase Polymerase Chain ReactionImidazolesGliomaMESH: Gene Expression Regulation NeoplasticFlow CytometryMESH : Cyclin D1Gene Expression Regulation NeoplasticMESH : Nitric Oxide[SDV.IMM.IA]Life Sciences [q-bio]/Immunology/Adaptive immunologyMESH : Vascular Endothelial Growth Factor AHeterograftsMESH : Histological TechniquesMESH: ImidazolesResearch ArticleMESH : BenzoatesMESH: RatsMESH : Flow CytometryMESH : Gene Expression Regulation NeoplasticMESH : Real-Time Polymerase Chain ReactionMESH : Zebrafish[SDV.CAN]Life Sciences [q-bio]/CancerMESH: Histological TechniquesMESH : HeterograftsNitric OxideReal-Time Polymerase Chain ReactionMESH : ImidazolesMESH: Analysis of VarianceAnimalsMESH: Zebrafish[ SDV.IMM.II ] Life Sciences [q-bio]/Immunology/Innate immunityAnalysis of VarianceMESH: Vascular Endothelial Growth Factor Alcsh:RMESH: BenzoatesRatsMESH : GliomaMESH: Nitric Oxidelcsh:QMESH: HeterograftsMESH : Animals
researchProduct

Evaluation of Epigenetic and Radiomodifying Effects during Radiotherapy Treatments in Zebrafish

2021

Radiotherapy is still a long way from personalizing cancer treatment plans, and its effectiveness depends on the radiosensitivity of tumor cells. Indeed, therapies that are efficient and successful for some patients may be relatively ineffective for others. Based on this, radiobiological research is focusing on the ability of some reagents to make cancer cells more responsive to ionizing radiation, as well as to protect the surrounding healthy tissues from possible side effects. In this scenario, zebrafish emerged as an effective model system to test for radiation modifiers that can potentially be used for radiotherapeutic purposes in humans. The adoption of this experimental organism is fu…

Radiation-Sensitizing AgentsEmbryo NonmammalianQH301-705.5medicine.medical_treatmentEmbryonic DevelopmentSettore BIO/11 - Biologia MolecolareReviewBioinformaticsCatalysisEpigenesis GeneticInorganic Chemistryembryogenesis; epigenetics; radiomodifiers; radiotherapy; zebrafish.In vivomedicineAnimalsEpigeneticsRadiosensitivityBiology (General)Physical and Theoretical ChemistryQD1-999Molecular BiologyZebrafishradiotherapySpectroscopyradiomodifiersepigeneticsbiologybusiness.industryOrganic ChemistryGeneral Medicinezebrafishbiology.organism_classificationComputer Science ApplicationsCancer treatmentRadiation therapyChemistryModels AnimalCancer cellembryogenesisbusinessExperimental OrganismInternational Journal of Molecular Sciences
researchProduct

Environmental epigenetics in zebrafish

2017

Abstract It is widely accepted that the epigenome can act as the link between environmental cues, both external and internal, to the organism and phenotype by converting the environmental stimuli to phenotypic responses through changes in gene transcription outcomes. Environmental stress endured by individual organisms can also enforce epigenetic variations in offspring that had never experienced it directly, which is termed transgenerational inheritance. To date, research in the environmental epigenetics discipline has used a wide range of both model and non-model organisms to elucidate the various epigenetic mechanisms underlying the adaptive response to environmental stimuli. In this rev…

0301 basic medicinelcsh:QH426-470Settore BIO/11 - Biologia MolecolareReviewEnvironmentEpigenesis GeneticEmbryogenesi03 medical and health sciences0302 clinical medicineEnvironmental epigeneticEnvironmental epigeneticsGeneticsAnimalsEpigeneticsToxicantZebrafishMolecular BiologyOrganismZebrafishDNA methylation; Embryogenesis; Environmental epigenetics; Histone modifications; Methylome; Toxicant; Transgenerational inheritance; Zebrafish; Molecular Biology; GeneticsGeneticsDNA methylationbiologyHistone modificationsInheritance (genetic algorithm)Adaptive responseEpigenomebiology.organism_classificationHuman geneticsHistone Codelcsh:Genetics030104 developmental biologyEvolutionary biologyDNA methylationEmbryogenesisMethylomeHistone modification030217 neurology & neurosurgeryTransgenerational inheritanceEpigenetics & Chromatin
researchProduct

Fast whole-brain imaging of seizures in zebrafish larvae by two-photon light-sheet microscopy

2022

Light-sheet fluorescence microscopy (LSFM) enables real-time whole-brain functional imaging in zebrafish larvae. Conventional one photon LSFM can however induce undesirable visual stimulation due to the use of visible excitation light. The use of two-photon (2P) excitation, employing near-infrared invisible light, provides unbiased investigation of neuronal circuit dynamics. However, due to the low efficiency of the 2P absorption process, the imaging speed of this technique is typically limited by the signal-to-noise-ratio. Here, we describe a 2P LSFM setup designed for non-invasive imaging that enables quintuplicating state-of-the-art volumetric acquisition rate of the larval zebrafish bra…

Materials scienceepilepsy zebrafish calcium imaging light sheet imaging two photon imagingbrain01 natural sciencesQuantitative Biology - Quantitative MethodsArticle010309 optics03 medical and health scienceszebrafish brain imaging microscopy two-photon light sheetTwo-photon excitation microscopyNeuroimaging0103 physical sciencesZebrafish larvaeQuantitative Methods (q-bio.QM)030304 developmental biologytwo-photon0303 health sciencesimaginglight sheetzebrafishAtomic and Molecular Physics and OpticsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)3. Good healthFOS: Biological sciencesLight sheet fluorescence microscopyQuantitative Biology - Neurons and CognitionBiophysicsmicroscopyNeurons and Cognition (q-bio.NC)Biotechnology
researchProduct

Recurrent Mutations in the Basic Domain of TWIST2 Cause Ablepharon Macrostomia and Barber-Say Syndromes

2015

Contains fulltext : 153827.pdf (Publisher’s version ) (Open Access) Ablepharon macrostomia syndrome (AMS) and Barber-Say syndrome (BSS) are rare congenital ectodermal dysplasias characterized by similar clinical features. To establish the genetic basis of AMS and BSS, we performed extensive clinical phenotyping, whole exome and candidate gene sequencing, and functional validations. We identified a recurrent de novo mutation in TWIST2 in seven independent AMS-affected families, as well as another recurrent de novo mutation affecting the same amino acid in ten independent BSS-affected families. Moreover, a genotype-phenotype correlation was observed, because the two syndromes differed based s…

Models MolecularCandidate geneHirsutismProtein ConformationHeLa Cellmedicine.disease_causeTranscriptomeTwist transcription factorModelsGenetics(clinical)ExomeEye AbnormalitiesNon-U.S. Gov'tExomeGenetics (clinical)ZebrafishGeneticsMutationMicroscopyMacrostomiaSetleis syndromeHypertelorismResearch Support Non-U.S. Gov'tHypertrichosiEyelid DiseaseGENÉTICAPhenotypeEyelid DiseasesAbnormalitiesMultipleSequence AnalysisHumanChromatin ImmunoprecipitationMolecular Sequence DataMutation MissenseHypertrichosisAbnormalities; Multiple; Amino Acid Sequence; Animals; Base Sequence; Chromatin Immunoprecipitation; Exome; Eye Abnormalities; Eyelid Diseases; HeLa Cells; Hirsutism; Humans; Hypertelorism; Hypertrichosis; Macrostomia; Microscopy; Electron; Molecular Sequence Data; Mutation; Missense; Protein Conformation; Repressor Proteins; Sequence Analysis; DNA; Skin Abnormalities; Twist Transcription Factor; Zebrafish; Models; Molecular; Phenotype; Genetics; Genetics (clinical)Other Research Radboud Institute for Molecular Life Sciences [Radboudumc 0]BiologyResearch SupportElectronArticleFrameshift mutationGeneticAblepharon macrostomia syndromeSkin AbnormalitieGeneticsmedicineJournal ArticleAnimalsHumansAbnormalities MultipleAmino Acid SequenceNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]Base SequenceAnimalTwist-Related Protein 1MolecularSequence Analysis DNADNARepressor Proteinmedicine.diseaseRepressor ProteinsTwist Transcription FactorEye AbnormalitieMicroscopy ElectronMutationSkin Abnormalitiessense organsMissenseNanomedicine Radboud Institute for Molecular Life Sciences [Radboudumc 19]HeLa CellsAmerican journal of human genetics
researchProduct